Telegram Group & Telegram Channel
Introducing Symmetries to Black Box Meta Reinforcement Learning [2021] - применяем VSML на RL-задачах

Одна из статей, про которую я рассказывал выше, понравилась мне настолько, что я решил прочитать все статьи её автора за последние годы, и там я нашёл кучу интересного на тему мета-обучения.

В данной работе в лоб применяют VSML + генетику (называют SymLA) в нескольких сериях экспериментов:

1) Классические элементарные RL-задачи с перемешиванием
Суть эксперимента в том, что мы обучаем модель обучаться на задаче, а затем мета-тестируем на той же задаче, но с перемешанными входами и действиями. Бейзлайн от этого плавится, а VSML в принципе инвариантна к перестановкам (на новой задаче), поэтому у неё всё хорошо

2) Лабиринт с капканом и сердечком
Агент управляет персонажем в маленькой координатной сетке, на которой есть положительная и отрицательная награда. Модель мета-обучают, а при мета-тестировании награды меняют местами.
Бейзлайн жёстко переобучается под сбор сердечка, и после того, как оно начинает давать отрицательную награду, он продолжает его собирать. У VSML кривые обучения в обоих случаях одинаковые, то есть она всю информацию извлекает в процессе мета-тестирования

3) Смена RL-задачи на радикально другую
Всё просто - модель обучают на Gridworld (задача из пункта 2), а применяют на CartPole - совсем непохожей задаче. Картина та же самая.

Вполне вероятно, что данная технология сейчас находится в положении нейросетей в конце 1990-х. На MNIST (снова) успешно применили, но на большей задаче применить пока нереально. Не знаю, какие тут нужны вычислительные ресурсы, и есть ли они хотя бы у Deepmind, но я думаю, тот, кто первый успешно применит это на Atari, начнёт новую эру в ML. У нас будут претренированные алгоритмы, которые все будут применять в своих нишевых задачах и получать сильный прирост к профиту.

Надеюсь, к этому времени не запретят заниматься ML без ярлыка от роскомнадзора святейших мудрецов.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/85
Create:
Last Update:

Introducing Symmetries to Black Box Meta Reinforcement Learning [2021] - применяем VSML на RL-задачах

Одна из статей, про которую я рассказывал выше, понравилась мне настолько, что я решил прочитать все статьи её автора за последние годы, и там я нашёл кучу интересного на тему мета-обучения.

В данной работе в лоб применяют VSML + генетику (называют SymLA) в нескольких сериях экспериментов:

1) Классические элементарные RL-задачи с перемешиванием
Суть эксперимента в том, что мы обучаем модель обучаться на задаче, а затем мета-тестируем на той же задаче, но с перемешанными входами и действиями. Бейзлайн от этого плавится, а VSML в принципе инвариантна к перестановкам (на новой задаче), поэтому у неё всё хорошо

2) Лабиринт с капканом и сердечком
Агент управляет персонажем в маленькой координатной сетке, на которой есть положительная и отрицательная награда. Модель мета-обучают, а при мета-тестировании награды меняют местами.
Бейзлайн жёстко переобучается под сбор сердечка, и после того, как оно начинает давать отрицательную награду, он продолжает его собирать. У VSML кривые обучения в обоих случаях одинаковые, то есть она всю информацию извлекает в процессе мета-тестирования

3) Смена RL-задачи на радикально другую
Всё просто - модель обучают на Gridworld (задача из пункта 2), а применяют на CartPole - совсем непохожей задаче. Картина та же самая.

Вполне вероятно, что данная технология сейчас находится в положении нейросетей в конце 1990-х. На MNIST (снова) успешно применили, но на большей задаче применить пока нереально. Не знаю, какие тут нужны вычислительные ресурсы, и есть ли они хотя бы у Deepmind, но я думаю, тот, кто первый успешно применит это на Atari, начнёт новую эру в ML. У нас будут претренированные алгоритмы, которые все будут применять в своих нишевых задачах и получать сильный прирост к профиту.

Надеюсь, к этому времени не запретят заниматься ML без ярлыка от роскомнадзора святейших мудрецов.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/85

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Unlimited members in Telegram group now

Telegram has made it easier for its users to communicate, as it has introduced a feature that allows more than 200,000 users in a group chat. However, if the users in a group chat move past 200,000, it changes into "Broadcast Group", but the feature comes with a restriction. Groups with close to 200k members can be converted to a Broadcast Group that allows unlimited members. Only admins can post in Broadcast Groups, but everyone can read along and participate in group Voice Chats," Telegram added.

Telegram announces Anonymous Admins

The cloud-based messaging platform is also adding Anonymous Group Admins feature. As per Telegram, this feature is being introduced for safer protests. As per the Telegram blog post, users can “Toggle Remain Anonymous in Admin rights to enable Batman mode. The anonymized admin will be hidden in the list of group members, and their messages in the chat will be signed with the group name, similar to channel posts.”

Knowledge Accumulator from ye


Telegram Knowledge Accumulator
FROM USA